MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : PE-EE 601A Digital control system
UPID : 006642
Time Allotted : 3 Hours
Full Marks :70
The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following :
[$1 \times 10=10$]
(I) Anti-aliasing filter is \qquad .
(II) The ROC of a causal signal is \qquad of a circle of radius R.
(III) Jordon canonical form state model is applicable to \qquad .
(IV) A linear discrete time has characteristic equation $Z^{3}-0.16 Z=0$. Check the stability.
(V) Assertion (A): z-transform is used to analyze discrete time system and it is also called pulse transfer function approach. Reason (R): the sampled signal is assumed to be impulse trained whose strength or areas are equal to the continuous time signal of the sampling instants.
Which of statement is /are correct
2. Both $A \& R$ true. R is the correct explanation of A
3. Both $A \& R$ true. R is not the correct explanation of A
4. A is true and R is false
5. $A \& R$ both are false
(VI) Jury stability is used for \qquad .
(VII) Given a unit step function $U(k)$, it is time derivative of \qquad .
(VIII) A state space system is described by

$$
F=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]
$$

Characteristic equation of the system is \qquad .
(IX) If a system has one or more non repeated roots on the unit circle, the system is \qquad stable.
(X) Find the mathematical expression of given system

(XI) Find the Z transform corresponding to the Laplace transform

$$
G(s)=\frac{10}{s(s+5)}
$$

(XII) Find $Y(z) / X(z)$ for the system described by the difference equation $Y(n)=Y(n-1)+X(n)$.

Group-B (Short Answer Type Question)

Answer any three of the following :
2. State initial and final value theorem of Z transform with mathematical expression.
3. Write short note on folding.
4. Determine Z transformation of polynomial function $a^{k} u(k)$ with ROC.
5. Consider the function
$X(S)=\frac{1-e^{-S T}}{S}$,
Show that $s=0$ is not a pole of $X(S)$.
6. Define state transition matrix and write the properties of state transition matrix.

Group-C (Long Answer Type Question)

Answer any three of the following :
[$15 \times 3=45$]
7. (a) Write the differences between digital control and continuous control system.
(b) Write short note on A / D converter
(c) Write short not on sample and hold circuit.
8. (a) Find $\mathrm{X}(\mathrm{k})$ for $\mathrm{k}=0,1,2,3,4 \ldots \ldots \ldots \ldots$ when $X(Z)=\frac{(10 z+5)}{(z-1)(z-0.2)}$
(b) Given Z transform

$$
X(z)=\frac{\left(1-e^{-a T}\right) z}{(z-1)\left(z-e^{-a T}\right)} f
$$

find inverse z transform using partial fraction method.
(c) Solve the following difference equation by use of z transformation method

$$
x(k+2)+3 x(k+1)+2 x(k)=0 ; x(0)=0, x(1)=1
$$ r 3

9. (a) Write short notes on Aliasing
(b) Obtain the pulse transfer function $\mathrm{G}(\mathrm{z})$ of the system shown in figure

(c) Obtain the pulse transfer function of a digital PID controller.
10. (a) Write necessary and sufficient condition for the state observer design.
(b) Write short note on full order state observer
(c) Why the state observers are used in control system?
11. (a) Define sampling theorem. Write significance of sampling theorem in digital control study.
(b) Consider the system shown in figure a and b . Obtain the pulse transfer function
for the each of two system.

