CS/B.TECH(N)/EVEN/SEM-6/6642/2022-2023/I130

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : PE-EE 601A Digital control system

UPID : 006642

Time Allotted : 3 Hours

Full Marks :70

 $[1 \times 10 = 10]$

The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following :

- (I) Anti-aliasing filter is_____
- (II) The ROC of a causal signal is _____ of a circle of radius R.
- (III) Jordon canonical form state model is applicable to_____
- $^{(IV)}$ A linear discrete time has characteristic equation Z^3 -0.16Z=0. Check the stability.
- (V) Assertion (A): z-transform is used to analyze discrete time system and it is also called pulse transfer function approach. Reason (R): the sampled signal is assumed to be impulse trained whose strength or areas are equal to the continuous time signal of the sampling instants. Which of statement is /are correct
 - 1. Both A & R true. R is the correct explanation of A
 - 2. Both A & R true. R is not the correct explanation of A
 - 3. A is true and R is false
 - 4. A & R both are false
- (VI) Jury stability is used for_____
- (VII) Given a unit step function U(k), it is time derivative of _____
- (VIII) A state space system is described by

$$F = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

Characteristic equation of the system is_____.

- ^(IX) If a system has one or more non repeated roots on the unit circle, the system is ______ stable.
- (X) Find the mathematical expression of given system

 $^{(\rm XI)}$ $\,$ Find the Z transform corresponding to the Laplace transform

$$G(s) = \frac{10}{s(s+5)}$$

(XII) Find Y(z)/X(z) for the system described by the difference equation Y(n)=Y(n-1)+X(n).

Group-B (Short Answer Type Questio

	Answer any three of the following :	[5 x 3 = 15]
2.	State initial and final value theorem of Z transform with mathematical expression.	[5]
3.	Write short note on folding.	[5]
4.	Determine Z transformation of polynomial function a ^k u(k) with ROC.	[5]
5.	Consider the function	[5]

	X	$(S) = \frac{1}{S}$	
	Sho	w that s=0 is not a pole of X(S).	
6.	Def	fine state transition matrix and write the properties of state transition matrix.	[5]
		Group-C (Long Answer Type Question)	
		Answer any three of the following :	[15 x 3 = 45]
7.	(a)	Write the differences between digital control and continuous control system.	[5]
	(b)	Write short note on A/D converter	[5]
	(c)	Write short not on sample and hold circuit.	[5]
8.	(a)	Find X(k) for k=0,1,2,3,4when $X(Z) = \frac{(10z+5)}{(z-1)(z-0.2)}$	[5]
	(b)	Given Z transform	[5]
		$X(z) = \frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})} \mathbf{f}$	
		find inverse z transform using partial fraction method.	
	(c)	Solve the following difference equation by use of z transformation method	[5]
		x(k+2) + 3x(k+1) + 2x(k) = 0; x(0) = 0, x(1) = 1,	
9.	(a)	Write short notes on Aliasing	[5]
	(b)	Obtain the pulse transfer function G(z) of the system shown in figure	[5]
		$\frac{\chi^{*}(h)}{ST - \chi(z)} \frac{\chi(h)}{G_{2}(S)} \xrightarrow{\chi(h)} \frac{\chi(h)}{\chi^{*}(h)}$ $G_{2}(S) = \frac{1}{S+a} \xrightarrow{S(T) - \chi(z)}$	
	(c)	Obtain the pulse transfer function of a digital PID controller.	[5]
10.	(a)	Write necessary and sufficient condition for the state observer design.	[5]
	(b)	Write short note on full order state observer	[5]
	(c)	Why the state observers are used in control system?	[5]
11.	(a)	Define sampling theorem. Write significance of sampling theorem in digital control study.	[5]
	(b)	Consider the system shown in figure a and b. Obtain the pulse transfer function	[10]

$\frac{Y(Z)}{X(Z)}$

for the each of two system.

-ST

*** END OF PAPER ***